Chapter 19 ElectroChemistry

These Notes are to <u>SUPPLIMENT</u> the Text, They do NOT Replace reading the Text Material. Additional material that is in the Text will be on your tests! To get the most information, <u>READ THE</u> <u>CHAPTER</u> prior to the Lecture, bring in these lecture notes and make comments on these notes. These notes alone are NOT enough to pass any test!

The author is providing these notes as an addition to the students reading the text book and

listening to the lecture. Although the author tries to keep errors to a minimum, the student is responsible

for correcting any errors in these notes.

Pile Cell: Zinc and silver disks separated by paper disks soaked in NaCl.

Daniell Cell: Each metal was surrounded by a solution of the metal ion and the solutions were separated by a porous ceramic barrier.

Oxidation-Reduction half reactions:

Redox involves a transfer of electrons. For the above cells:

 $Zn \rightarrow Zn^{+2} + 2e^{-}$ $Cu^{+2} + 2e^{-} \rightarrow Cu$

Skeleton Redox Equations:

- 1. What species is oxidized? What species is reduced?
- 2. What species results from the oxidation and reduction?
- 3. Does the reaction occur in acid or basic solution?

OXIDATION = Loss of electrons

Oxidation Agent is reduced: $Cu^{+2} \rightarrow Cu^{\circ}$

Iron (II) is oxidized to Iron (III) with permanganate ion which is reduced to manganese (II) ion:

+2	+7	H_2O	+3		+2	[Oxidation Numbers]
Fe ²⁺ +	MnO ₄	\rightarrow	Fe ³⁺	+	Mn ²⁺	Acidic Solution

REDUCTION = Gain of electrons

Reduction Agent is oxidized

Balancing Redox Equations in Acidic Solutions:

1. Assign Oxidation Numbers to each atom so you can determine which atom is

oxidized [increases in ox number] and which is

reduced [decreases in ox number]. [See equation above]

2. Split the Skeleton Equation into two half reactions

Species that increases in oxidation number write as an oxidation half reaction

$$Fe^{2+} \rightarrow Fe^{3+}$$
 [$Fe^{2+} \rightarrow Fe^{3+} + e^{-}$]

Species that decreases in oxidation number write as the reduction half reaction

 $MnO_4^- \rightarrow Mn^{2+}$ [$MnO_4^- + 5e^- \rightarrow Mn^{2+}$]

3. Complete and balance each half reaction:

A. Balance all atoms except for O and H

$$Fe^{2+} \rightarrow Fe^{3+}$$

MnO₄⁻ \rightarrow Mn²⁺

B. Balance O atoms by adding H_2O to one side of the equation

 $MnO_4^- \rightarrow Mn^{2+} + 4 H_2O$

C. Balance H atoms by adding H^+ ions to one side of the equation

 $MnO_4^- + 8 H^+ \rightarrow Mn^{2+} + 4 H_2O$

D. Balance the electric charge by adding e⁻ to the more positive side

 $MnO_{4}^{-} + 8 H^{+} + 5e^{-} \rightarrow Mn^{2+} + 4 H_{2}O$ Note e⁻ gained in a reduction $Fe^{2+} \rightarrow Fe^{3+} + e^{-}$

4. Combine the two half reactions to obtain the balanced Redox equation.

A. Multiply each half by a factor so when the 1/2 reactions are added the electrons cancel out

$$1 x [MnO_4^- + 8 H^+ + 5e^- \rightarrow Mn^{2+} + 4 H_2O]$$

$$5 x [Fe^{2+} \rightarrow Fe^{3+} + e^-]$$

B. Simplify the balanced equation by canceling species that are on both sides of the equation and reduce the coefficients to the smallest whole numbers.

$$5 \text{ Fe}^{2+}$$
 + MnO₄ + 8 H⁺ + 5e \rightarrow Mn²⁺ + 4 H₂O + 5 Fe³⁺ + 5e

Example 19.1 Zinc metal reacts with nitric acid in concentrated solution to reduce the nitrate to ammonium and the zinc is oxidized to Zn^{2+} . Write the net ionic equation for this reaction?

Assign Oxidation Numbers Skeleton Equation	$\begin{array}{ccc} 0 & +5 \\ \mathrm{Zn}_{(\mathrm{s})} & + \mathrm{NO}_3^{-} \end{array} \rightarrow$	+2 Zn ²⁺ +	-3 NH4 ⁺	
Separate ¹ /2 reactions	$\begin{array}{ccc} Zn_{(s)} & \rightarrow & Zn^{2+} \\ NO_3^- & \rightarrow & NH_4^+ \end{array}$			
Balance for O and H	$Zn_{(s)}$ 10 H ⁺ + NO ₃ ⁻	$\begin{array}{c} \rightarrow & Zn \\ \rightarrow & NH \end{array}$	$H_4^{+} + 3 H_2O$	
Add e- to the + side	$Zn_{(s)}$ 10 H ⁺ + NO ₃ ⁻ + 8 e	$\begin{array}{c} \rightarrow & Zn \\ \rightarrow & NF \end{array}$	$H^{2+} + 2 e^{-}$ $H_4^+ + 3 H_2O$	
Combine the two half react	ions to			

Exercise 19.1 Iodine reacts with nitric acid to form HIO₃, the skeleton equation is:

 $I_{2(s)} + NO_3 \rightarrow IO_3 + NO_{2(g)}$ Show the complete Redox Equations

Assign oxidation numbers to the skeleton equation (Step 1).

Separate into two incomplete half-reactions (Step 2).

Iodine is oxidized (increases in oxidation number), and nitrogen is reduced (decreases in oxidation number).

 $I_2 \rightarrow IO_3$ $NO_3 \rightarrow NO_2$

Balance each half-reaction separately.

The oxidation half-reaction is not balanced in I, so place a two in front of IO_3^- (Step 3a). Then add six H₂O's to the left side to balance O atoms (Step 3b), and add twelve H⁺ ions to the right side to balance H atoms (Step 3c).

Add ten electrons to the right side to balance the charge (Step 3d).

The balanced oxidation half-reaction is

 $I_2 + 6 H_2O \rightarrow 2 IO_3^- + 12 H^+ + 10 e^-$

The reduction half-reaction is balanced in N (Step 3a).

Add one H₂O to the right side to balance O atoms (Step 3b), and

add two H^+ ion to the left side to balance H atoms.

Finally, add one electron to the left side to balance the charge (Step 3d).

The balanced reduction half-reaction is

 $NO_3^- + 2 H^+ + e^- \rightarrow NO_2 + H_2O$

Multiply the reduction half-reaction by ten so that, when added, the electrons cancel (Step 4a).

$$I_{2} + 6 H_{2}O \longrightarrow 2 IO_{3}^{-} + 12 H^{+} + 10 e^{-}$$

$$I0 NO_{3}^{-} + 20 H^{+} + 10 e^{-} \longrightarrow 10 NO_{2} + 10 H_{2}O$$

$$I_{2} + 10 NO_{3}^{-} + 20 H^{+} + 6 H_{2}O + 10e^{-} \longrightarrow 2 IO_{3}^{-} + 10 NO_{2} + 12 H^{+} + 10 H_{2}O + 10e^{-}$$

Simplify the equation by canceling the twelve H^+ and six H_2O that appear on both sides. The coefficients do not need to be reduced (Step 4b). The net ionic equation is

 $I_2(s) + 10 \text{ NO}_3(aq) + 8 \text{ H}^+(aq) \rightarrow 2 \text{ IO}_3(aq) + 10 \text{ NO}_2(g) + 4 \text{ H}_2O(l)$

Balancing Redox Equations in Basic Solutions Steps 1-4 above

5. Note the number of H^+ in the equation and put that number of OH^- on both sides of the equation

6. Change $H^+ + OH^- \rightarrow H_2O$, Cancel H_2O 's on both sides, Reduce equation to simplest terms

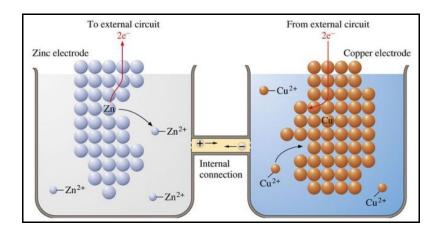
Example 19.2 Permanganate ion oxidizes Sulfite in basic solution:

$MnO_4^- + S$	O_3^{2-}	→ $MnO_2 \downarrow + SO_4^{2-}$	CLASS PROJECT DO STEPS $1 \rightarrow 4$
2 MnO ₄ ⁻ +	$3 \text{ SO}_3^{2-} + 2 \text{ H}^+$	→ 2 MnO ₂ ↓ + 3 SO ₄ ²	+ H ₂ O
Add OH ⁻	$2 \text{ MnO}_4^- + 3 \text{ S}_4^-$	SO_3^{2-} + 2 H ⁺ + 2 OH ⁻	→ $2 \text{ MnO}_2 \downarrow + 3 \text{ SO}_4^{2-} + \text{H}_2\text{O} + 2 \text{ OH}^{-}$
Convert to H ₂ O	$2 \text{ MnO}_4^- + 3 \text{ S}_4^-$	$\mathrm{SO_3}^{2-} + \stackrel{?}{=} \mathrm{H_2O} \rightarrow 2 \mathrm{N}$	$InO_2 \downarrow + 3 SO_4^{2-} + H_2 \Theta + 2 OH^{-}$
Reduce	$2 \text{ MnO}_4^- + 3 \text{ S}_4^-$	$\mathrm{SO_3}^{2-}$ + H ₂ O \rightarrow 2 Mm	$nO_2 \downarrow + 3 SO_4^{2-} + 2 OH^{-1}$

Exercise 19.2 Balance the following in basic solution: $H_2O_2 + ClO_2 \rightarrow ClO_2 + O_2$ After balancing the equation as if it were in acid solution, you obtain the following:

 $H_2O_2 + 2 ClO_2 \rightarrow 2 ClO_2^- + O_2 + 2 H^+$

Add two OH^- to both sides of the equation (Step 5), and replace the two H^+ and two OH^- on the right side with two H_2O .

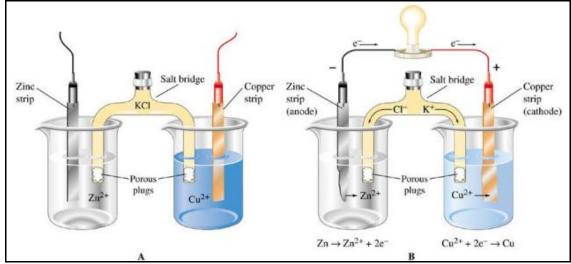

No further cancellation is required. The balanced equation for the reaction in basic solution is

$$H_2O_2 + 2 \operatorname{ClO}_2 + 2 \operatorname{OH}^2 \rightarrow 2 \operatorname{ClO}_2^2 + O_2 + 2 H_2O$$

Voltaic Cells

Electrochemical Cell a system consisting of electrodes that dip into an electrolyte and in which a chemical reaction either uses or generates an electric current

Voltaic / Galvanic Cell is an electrochemical cell in which a spontaneous reaction generates an electric current


Electrolytic Cell is an electrochemical cell in which an electric current drives an otherwise non-spontaneous reaction/

19.2 Construction of Voltaic Cells

Voltaic cell consists of two half-cells that are each electrically connected.

Half-Cell is a portion of an electrochemical cell in which a half reaction takes place

Internal Connection allows ions to flow between the half cells without mixing of the half cell solutions. Salt Bridge is a tube of an electrolyte in a gel that is connected to the two half-cells of a voltaic cell [The Zinc Strip on the left is the Anode]

Example Zinc / Cu Voltaic Cell: $Zn \downarrow \rightarrow Zn^{2+} + 2e^{-}$ $Zn^{2+} + 2e^{-}$ [Oxidation]Cull Reaction is the Net Reaction that occurs in a voltaic cell. $Zn \downarrow + Cu^{2+} \rightarrow Zn^{2+} + Cu \downarrow$ [Oxidation]Sum of the half reactions: $Zn \downarrow + Cu^{2+} \rightarrow Zn^{2+} + Cu \downarrow$ [Oxidation]Note: The anode in a voltaic cell has a negative sign.[Oxidation]

Chem 1046 Ch 19 Electrochemistry 5 of 17

Example 19.3 Draw the voltaic cell that has Cd rod in $Cd(NO_3)_2$ and a Ag rod in AgNO₃, connected by a salt bridge. Label the anode and cathode and show all the chemical reactions, silver is reduced.

Anode = Oxidation half-cell = on Left

Notation: (s) is for the actual **cell terminals** and are at the end

Gas half-reaction, where the terminal is inert such as Platinum, a Hydrogen Electrode is H₂ bubbles over a platinum plate: $2 H^+_{(aq)} + 2 e^- \leftrightarrow H_{2(g)}$

Notation: Other Examples:	Cathode: H ⁺ _{(aq}	$H_{2(g)}$ Pt Anoc	le: Pt I	$H_{2(g)} \operatorname{H}^{+}_{(aq)}$
-	Cathode $Cl_{2(g)} Cl_{(aq)} Pt$	Cathode Real Cl _{2(g)} + 2 e^{-1}	$\begin{array}{l} \text{action} \\ \leftarrow \rightarrow 2 \text{ Cl}_{0} \end{array}$	ag)
	$Fe^{+3}_{(aq)}, Fe^{+2}_{(aq)} Pt$		$\leftarrow \rightarrow \mathrm{Fe}^{+2}$	
	$\mathrm{Cd}^{2+}_{(\mathrm{aq})} \mathrm{Cd}_{(\mathrm{s})}$	$Cd^{2+}_{(aq)} + 2$	$e^{-} \leftarrow \rightarrow Cd_{(s)}$	-
Exercise 19.4 Write	e the notation for:	$2H^{+}_{(aq)} + 2e^{-} \leftarrow \rightarrow$	• H _{2(g)}	$Zn_{(s)} \rightarrow Zn^{2+}_{(aq)} + 2e^{-}$

 $Zn(s) \mid Zn^{2+}(aq) \parallel H^{+}(aq) \mid H_{2}(g) \mid Pt(s).$

Write the Cell Reaction from the Cell Notation

 $\begin{array}{c} \textbf{Example 19.4} \quad \text{Write the cell reaction for a voltaic cell: } Tl_{(s)} \mid Tl^{+}_{(aq)} \mid \mid Sn^{+2}_{(aq)} \mid Sn_{(s)} \\ Tl_{(s)} \mid Tl^{+}_{(aq)} \quad Sn^{+2}_{(aq)} \mid Sn_{(s)} \end{array}$

 $Tl_{(s)} \rightarrow Tl^{+}_{(aq)} + e^{-} \qquad Sn^{+2}_{(aq)} + 2e^{-} \rightarrow Sn_{(s)}$ $2 Tl_{(s)} \rightarrow Tl^{+}_{(aq)} + 2e^{-} \qquad Sn^{+2}_{(aq)} + 2e^{-} \rightarrow Sn_{(s)}$ $2 Tl_{(s)} + Sn^{+}_{(aq)} \rightarrow 2 Tl^{+}_{(aq)} + Sn_{(s)}$

For the voltaic cell: $Zn_{(s)} | Zn^{+2}_{(aq)} || Fe^{3+}_{(aq)}, Fe^{2+}_{(aq)} | Pt_{(s)}$

 $\begin{aligned} &Zn_{(s)} \mid Zn^{+2}_{(aq)} & Fe^{3+}_{(aq)}, Fe^{2+}_{(aq)} \mid Pt_{(s)} \\ &Zn_{(s)} \rightarrow Zn^{2+}_{(aq)} + 2 e^{-} & Fe^{3+}_{(aq)} + e^{-} \rightarrow Fe^{2+}_{(aq)} \\ &Zn_{(s)} + 2 Fe^{3+}_{(aq)} \rightarrow Zn^{2+}_{(aq)} + 2 Fe^{2+}_{(aq)} \end{aligned}$

Must specify the concentrations of the solutions / ions: $Zn_{(s)} | Zn^{2+}_{(aq)} (0.10 \text{ M}) \rightarrow H^{+}_{(aq)} (1.0 \text{ M}) | H_{2(g)} (1.0 \text{ atm}) \text{ Pt}$

Exercise 19.5 Give the cell reaction for the voltaic cell: $Cd_{(s)} | Cd^{+2}_{(aq)} || H^{+}_{(aq)} | H_{2(g)} | Pt_{(s)}$ Class Project $Cd(s) \rightarrow Cd^{2+}(aq) + 2 e^{-} 2H^{+}(aq) + 2 e^{-} \rightarrow H_{2}(g)$ Summing the half-cell reactions gives the overall cell reaction. $Cd(s) + 2H^{+}(aq) \rightarrow Cd^{2+}(aq) + H_{2}(g)$

19.4 Electromotive Force

Work is needed to move the electrons in the wire or to move the ions through a solution.

Potential Difference is the difference in electric potential between two points.

Volt, V is the SI unit of potential difference

Electrical Work W	=	Charge * potential di -nF * V	fference	
Joules	=	coulombs * volts		10^{18} elementary charges mb of electrons per second
Founday constant F is th	a magnitu	ida of abarra on one m	1 Volt Coulomb = 1	Joule
Faraday constant , F is th	ie magniti	ide of charge on one m	ole of electrons	$F = 96,500 \text{ C/mol e}^{-1}$

Cells have resistance [e.g. the salt bridge] where it takes work to move the ions across it. The greater the current, the lower the voltage.

Electromotive Force, emf or cell potential (E_{cell}) is the maximum difference between the electrodes of a voltaic cell

Anode = negative pole, **Cathode** = positive pole

Maximum work (w_{max}) from a cell is related to the number of moles of e⁻ transferred (n) in cell equation.

Chem 1046 Ch 19 Electrochemistry 7 of 17 11 July 2009 3:57 PM

 $\mathbf{w}_{max} = -\mathbf{n} \mathbf{F} \mathbf{E}_{cell}$ n= #moles of e-, F = Faraday Const, $\mathbf{E}_{cell} = cell \text{ emf}$

Example 19.5 The emf of a cell is 0.650 v, what is the w_{max} when 0.500 g of H₂ is consumed? $Hg_2^{2^+} + H_2 \leftarrow 2 Hg_{(1)} + 2H^+$ The half reactions are: $Hg_2^{2^+} + 2 e^- \leftarrow 2 Hg_{(1)}$ $H_2 \leftarrow 2H^+ + 2 e^$ n = 2 moles of electrons transferred $w_{max} = -n F E_{cell} = -2$ mole $e^- * 96,500$ C/mole $e^- * 0.650 v = -1.25 x 10^5 v C = J$ Now for 0.500 g of H₂: $0.500 g H_2$ $2.02 g H_2/Mole$ $* \frac{-1.25 x 10^5 J}{1 \text{ mole H}^2} = -3.09 x 10^4 J$ Exercise 19.6 The emf of a cell is 1.10 v, what is the w_{max} when 6.54 g of Zn is consumed? $Zn \downarrow + Cu^{2^+} \rightarrow Zn^{2^+} + Cu \downarrow$ The half-reactions are

 $Zn(s) \rightarrow Zn^{2+}(aq) + 2 e$ - $Cu^{2+}(aq) + 2 e$ - $\rightarrow Cu(s)$

n equals two, and the maximum work for the reaction as written is $w_{max} = -nFE_{cell} = -2 \times 9.65 \times 10^4 \text{ C/mol e} \times 1.10 \text{ V} = -2.123 \times 10^5 \text{ V} \cdot \text{C} = -2.12 \times 10^5 \text{ J}$

For 6.54 g of zinc metal, the maximum work is

6.54 g Zn x $\frac{1 \text{ mol Zn}}{65.39 \text{ g Zn}}$ x $\frac{-2.123 \text{ x } 10^5 \text{ J}}{1 \text{ mol Zn}}$ = $-2.123 \text{ x } 10^4$ = $-2.12 \text{ x } 10^4 \text{ J}$

19.5 Standard Cell emf

Cell emf is the measure of the cell driving force = E_{cell} = oxidation potential + reduction potential				
Reduced species	\rightarrow oxidized species + ne ⁻	oxidation at the anode		
Oxidized species + ne ⁻	\rightarrow reduced species	reduction at the cathode		

Oxidation potential for a ¹/₂ reaction = - Reduction potential for the REVERSE of the ¹/₂ reaction

The emf of a voltaic cell depends on the concentrations and temperatures of the substances

Standard emf = E^{o}_{cell} is the emf of a voltaic cell operating under standard state conditions [concentrations = 1 M, gas pressure = 1 atm, temp = 25 °C]

*** Standard Hydrogen Electrode is assigned a potential of 0.0 v.

*** Standard Electrode Potential = E° at standard state conditions [concentrations = 1 M, gas pressure = 1 atm, temp = 25 °C]

Strongest Reducing Agents have the most negative E^o

$L^{+(aq)} + e^{-} \rightarrow Li_{(s)}$	Li _(s) is a strong reducer
$F_{2(g)} + 2 e \rightarrow 2 F$	F ₂ is a strong oxidizer

Example 19.6 Order the following oxidizing agents by increasing strength: Cl₂, H₂O₂, Fe³⁺

Cl ₂ + 2 e-	$\leftarrow \rightarrow 2 \text{ Cl}^-$	1.36 v
$H_2O_2 + 2H^+ + 2e^-$	\leftrightarrow 2 H ₂ O	1.78 v
$Fe^{3+} + e^{-}$	\leftrightarrow > Fe ²⁺	0.77 v

Order the following reducing agents by increasing strength: $H_{2(g)}$, $Al_{(s)}$, $Cu_{(s)}$

$H^{+}_{(aq)} + 2 e^{-}$ $Al^{+3} + 3 e^{-}$	$\leftarrow \rightarrow H_{2(g)}$	0.00 v
$Al^{+3} + 3e^{-1}$	$\leftarrow \rightarrow \operatorname{Al}_{(s)}$	-1.66 v
$Cu^{+2} + 2e^{-1}$	$\leftarrow \rightarrow Cu_{(s)}$	0.34 v

Exercise 19.7 What is he stronger oxidizing agent: NO_3^{-} (aq) in acidic solution going to NO, or Ag^{+} (aq)

$Ag^+(aq) + e^-$	\rightarrow	Ag(s)	0.80 V
$NO_3(aq) + 4H^+(aq) + 4e^-$	\rightarrow	$NO(g) + 2H_2O(l)$	0.96 V

The stronger oxidizing agent is the one involved in the half-reaction with the more positive standard electrode potential, so NO_3^- is the stronger oxidizing agent.

Reaction Spontaneity: If the stronger oxidizing agent is the reactant the equation is spontaneous. If the stronger reducing agent is the product, the reaction is spontaneous.

Example 19.7 Is the following spontaneous: $Zn^{2+} + 2 Fe^{2+} \rightarrow Zn \downarrow + 2 Fe^{3+}$ The ¹/₂ reactions:

 $\begin{array}{rcl} \mathrm{Zn}^{2+} + 2 \, \mathrm{e}^{-} & \rightarrow & \mathrm{Zn} \downarrow & \mathrm{E}^{\mathrm{o}} = -0.76 \, \mathrm{v} \\ \mathrm{Fe}^{3+} + \, \mathrm{e}^{-} & \rightarrow & \mathrm{Fe}^{+2} & \mathrm{E}^{\mathrm{o}} = 0.77 \, \mathrm{v} \end{array}$

The stronger oxidizing agent is the more positive one.

 Fe^{3+} is the stronger oxidizing agent, the reaction is non-spontaneous.

Exercise 19.8 Is the following spontaneous: $Cu^{2+} + 2I^- \rightarrow Cu \downarrow + I_2$

 $\begin{array}{cccc} Cu^{2+} + 2 e^{-} & \rightarrow & Cu \downarrow & + 0.34 v \\ I_2 + 2 e^{-} & \rightarrow & 2 \Gamma & + 0.54 v \end{array} \\ \end{array} \\ \begin{array}{cccc} \text{Reaction IS NOT spontaneous} \end{array}$

Strong	Reducer
--------	---------

Cathode (Reduction) Half-ReactionPLi ⁺ (aq) + e ⁻ \Longrightarrow Li(s)Na ⁺ (aq) + e ⁻ \Longrightarrow Na(s)Mg ²⁺ (aq) + 2e ⁻ \Longrightarrow Mg(s)Al ³⁺ (aq) + 3e ⁻ \Longrightarrow Al(s)2H ₂ O(l) + 2e ⁻ \Longrightarrow H ₂ (g) + 2OH ⁻ (aq)Zn ²⁺ (aq) + 2e ⁻ \Longrightarrow Zn(s)	Standard Potential , Potential , Potent
$Na^{+}(aq) + e^{-} \rightleftharpoons Na(s)$ $Mg^{2+}(aq) + 2e^{-} \rightleftharpoons Mg(s)$ $Al^{3+}(aq) + 3e^{-} \rightleftharpoons Al(s)$ $2H_{2}O(l) + 2e^{-} \rightleftharpoons H_{2}(g) + 2OH^{-}(aq)$ $Zn^{2+}(aq) + 2e^{-} \rightleftharpoons Zn(s)$ $Cr^{3+}(aq) + 3e^{-} \rightleftharpoons Cr(s)$	-2.71 -2.38 -1.66
$Mg^{2+}(aq) + 2e^{-} \Longrightarrow Mg(s)$ $Al^{3+}(aq) + 3e^{-} \Longrightarrow Al(s)$ $2H_2O(l) + 2e^{-} \Longrightarrow H_2(g) + 2OH^{-}(aq)$ $Zn^{2+}(aq) + 2e^{-} \Longrightarrow Zn(s)$ $Cr^{3+}(aq) + 3e^{-} \Longrightarrow Cr(s)$	-2.38 -1.66
$Al^{3+}(aq) + 3e^{-} \Longrightarrow Al(s)$ $2H_2O(l) + 2e^{-} \Longrightarrow H_2(g) + 2OH^{-}(aq)$ $Zn^{2+}(aq) + 2e^{-} \Longrightarrow Zn(s)$ $Cr^{3+}(aq) + 3e^{-} \Longrightarrow Cr(s)$	-1.66
$2H_2O(l) + 2e^- \Longrightarrow H_2(g) + 2OH^-(aq)$ $Zn^{2+}(aq) + 2e^- \Longrightarrow Zn(s)$ $Cr^{3+}(aq) + 3e^- \Longrightarrow Cr(s)$	
$Zn^{2+}(aq) + 2e^{-} \Longrightarrow Zn(s)$ $Cr^{3+}(aq) + 3e^{-} \Longrightarrow Cr(s)$	-0.83
$\operatorname{Cr}^{3+}(aq) + 3e^{-} \Longrightarrow \operatorname{Cr}(s)$	0.05
	-0.76
$\operatorname{Fe}^{2+}(aq) + 2e^{-} \Longrightarrow \operatorname{Fe}(s)$	-0.74
이 같은 것을 물었다. 방법에 집에 가지 않는 것은 것은 것을 가지 않는 것이 같은 것을 하는 것이 같이	-0.41
	-0.40
$Ni^{2+}(aq) + 2e^{-} \Longrightarrow Ni(s)$	-0.23
	-0.14
	-0.13
$\operatorname{Fe}^{3+}(aq) + 3e^{-} \Longrightarrow \operatorname{Fe}(s)$	-0.04
$\mathrm{H}^+(aq) + 2\mathrm{e}^- \rightleftharpoons \mathrm{H}_2(g)$	0.00
$\sin^{4+}(aq) + 2e^- \Longrightarrow \operatorname{Sn}^{2+}(aq)$	0.15
$\operatorname{Cu}^{2+}(aq) + \mathrm{e}^{-} \Longrightarrow \operatorname{Cu}^{+}(aq)$	0.16
$\operatorname{Cu}^{2+}(aq) + 2e^{-} \Longrightarrow \operatorname{Cu}(s)$	0.34
$O^{-}(aq) + H_2O(l) + 2e^{-} \Longrightarrow I^{-}(aq) + 2OH^{-}(aq)$	0.49
$\operatorname{Cu}^+(aq) + \mathrm{e}^- \rightleftharpoons \operatorname{Cu}(s)$	0.52
$_2(s) + 2e^- \Longrightarrow 2I^-(aq)$	0.54
$\operatorname{Fe}^{3+}(aq) + \operatorname{e}^{-} \Longrightarrow \operatorname{Fe}^{2+}(aq)$	0.77
$\operatorname{Hg_2}^{2^+}(aq) + 2e^- \Longrightarrow 2\operatorname{Hg}(l)$	0.80
$\operatorname{Ag}^+(aq) + \operatorname{e}^- \Longrightarrow \operatorname{Ag}(s)$	0.80
$\operatorname{Hg}^{2+}(aq) + 2e^{-} \Longrightarrow \operatorname{Hg}(l)$	0.85
$\text{ClO}^{-}(aq) + \text{H}_2\text{O}(l) + 2\text{e}^{-} \Longrightarrow \text{Cl}^{-}(aq) + 2\text{OH}^{-}(aq)$	0.90
$Hg^{2+}(aq) + 2e^{-} \Longrightarrow Hg_2^{2+}(aq)$	0.90
$NO_3^-(aq) + 4H^+(aq) + 3e^- \Longrightarrow NO(g) + 2H_2O(l)$	0.96
$\operatorname{Br}_2(l) + 2e^- \Longrightarrow 2\operatorname{Br}^-(aq)$	1.07
$D_2(g) + 4H^+(aq) + 4e^- \Longrightarrow 2H_2O(l)$	1.23
$\operatorname{Cr}_{2}O_{7}^{2-}(aq) + 14\mathrm{H}^{+}(aq) + 6\mathrm{e}^{-} \Longrightarrow 2\mathrm{Cr}^{3+}(aq) + 7\mathrm{H}_{2}O(l)$	1.33
$\operatorname{Cl}_2(g) + 2e^- \Longrightarrow 2\operatorname{Cl}^-(aq)$	1.36
$MnO_4^-(aq) + 8H^+(aq) + 5e^- \Longrightarrow Mn^{2+}(aq) + 4H_2O(l)$	1.49
$H_2O_2(aq) + 2H^+(aq) + 2e^- \Longrightarrow 2H_2O(l)$	1.78
$S_2O_8^{2-}(aq) + 2e^- \Longrightarrow 2SO_4^{2-}(aq)$	2.01
$F_2(g) + 2e^- \Longrightarrow 2F^-(aq)$	2.87

Strong oxidizer

Cell emfs by addition of the ¹/₂ reaction and the standard potentials.

Here's a cell with Cadmium and Silver electrodes:

$Cd^{2+} + 2e^{-}$	→ Cd↓	$E_{cd}^{o} = -0.40 v$	[reduced as written]
$Ag^+ + e^-$	\rightarrow Ag \downarrow	$\mathrm{E}^{\mathrm{oAg}} = 0.80 \mathrm{v}$	[reduced as written]

The cell is spontaneous with the stronger oxidation part on the left,

Ag⁺ is a stronger oxidizing agent than Cd.

You change the order and the sign of the most negative So the reactions are:

Cd↓	\rightarrow Cd ²⁺ + 2 e ⁻	$-E_{cd}^{o} = 0.40 v$	[oxidized as written]
$Ag^+ + e^-$	\rightarrow Ag \downarrow	$E^{oAg} = 0.80 v$	[reduced as written]

Multiply to equalize electrons:

$\begin{array}{ccc} Cd \downarrow & \rightarrow & Cd^{2+} + 2 e^{-} \\ 2 Ag^{+} + 2 e^{-} & \rightarrow & 2 Ag \downarrow \end{array}$	$-E^{o}_{cd} = 0.40 v$ $E^{oAg} = 0.80 v$	[oxidized as written] [reduced as written]
$Cd \downarrow + 2 Ag^+ \rightarrow Cd^{2+} + 2 Ag \downarrow$	$E^{o} = \sum E^{o} = 0.40 v$	+ 0.80 v = 1.20 v

A positive emf shows the cell reaction IS SPONTANEOUS.

$$\mathbf{E}^{\mathbf{o}} = \mathbf{E}^{\mathbf{o}}_{\text{Cathode}} \mathbf{E}^{\mathbf{o}}_{\text{Anode}}$$

Example 19.8 Calculate the standard emf of: $Al_{(s)} | Al^{3+}_{(aq)} || Fe^{2+}_{(aq)} | Fe_{(s)}$ From equation Left is anode or the Oxidation ¹/₂ cell

Al_{aq}^{3+} + 3 e- \rightarrow $Al_{(s)}$	$E^{o}_{Al} = -1.66 v$
$\operatorname{Fe}^{2+}_{(\mathrm{aq})}$ + 2 e- \rightarrow $\operatorname{Fe}_{(\mathrm{s})}$	$E^{o}_{Fe} = -0.41 v$

Change the direction and sign of the most negative

$$Al_{(s)}$$
 → $Al^{3+}_{(aq)}$ + 3 e- E^{o}_{Al} = +1.66 v
 $Fe^{2+}_{(aq)}$ + 2 e- → $Fe_{(s)}$ E^{o}_{Fe} = -0.41 v

Multiply to cancel out the electrons

$$2 * [Al_{(s)} \rightarrow Al^{3+}_{(aq)} + 3 e^{-}] E^{o}_{Al} = +1.66 v$$

$$3 * [Fe^{2+}_{(aq)} + 2 e^{-} \rightarrow Fe_{(s)}] E^{o}_{Fe} = -0.41 v$$

$$2 Al_{(s)} + 3 Fe^{2+}_{(aq)} \rightarrow 2 Al^{3+}_{(aq)} + 3 Fe_{(s)} E^{o} = \sum E^{o} = 1.25 v$$

Or $\mathbf{E}^{o}_{cell} = \mathbf{E}^{o}_{Cathode} - \mathbf{E}^{o}_{Anode} = -0.41 \text{ v} - (-1.66 \text{ v}) = 1.25 \text{ v}$

Exercise 19.9 Calculate $\mathbf{E}^{\mathbf{o}}_{\mathbf{cell}}$ for $Zn_{(s)} \mid Zn^{2+}_{(aq)} \parallel Cu^{2+}_{(aq)} \mid Cu_{(s)}$

Reverse the first half-reaction and its half-cell potential to obtain

Obtain the cell emf by adding the half-cell potentials.

 $E^{\circ}_{cell} = E^{\circ}_{Cu} - E^{\circ}_{Zn} = 0.34 V + 0.76 V = 1.10 V$

19.6 Equilibrium Constants from emfs SKIP THIS SECTION

19.7 Dependence of emf on Concentration

Nernst Equation: When the concentrations are not at the **Standard emf = E^{o}_{cell}** then use this equation:

$$E_{cell} = E_{cell}^{o} - \underline{0.0592} * \text{Log } q$$

$$Cd_{(s)} | Cd^{2+} (0.0100M) || H^{+} (1.00 M) | H_{2} (1.00 atm) Pt$$

 $Cd_{(s)} + 2H + \leftrightarrow Cd^{2+} + H_2$ From this we get the Equilibrium Constant $K = \frac{[Cd^{2+}]P_{H2}}{[H^+]^2}$

and we calculate $Q = \frac{[Cd^{2+}]P_{H2}}{[H^{+}]^{2}} = \frac{0.0100 * 1.00}{(1.00)^{2}} = 0.0100$

Example 19.12 What is the emf of $Zn_{(s)} | Zn^{2+} (1.00 \times 10^{-5} M) || Cu^{2+} (0.100 M) | Cu_{(s)}$, The standard emf is 1.10 v.

The cell Reaction is: $Zn_{(s)} + Cu^{2+} \rightarrow Zn^{2+} + Cu_{(s)}$

Q =
$$[Zn^{2+}] = \frac{1.00 \times 10^{-5}}{0.100} = 1.00 \times 10^{-4}$$

$$\begin{split} E_{cell} &= E^{o}_{cell} - \underbrace{0.0592}_{N} * \text{Log } q = \ 1.10 - \underbrace{0.0592}_{2} \log \left(\ 1.00 \ x \ 10^{-4} \right) = 1.10 - (-0.12) = 1.22 \ w \\ \text{Exercise 19.13} & \text{What is the emf of } Zn_{(s)} \mid Zn^{2+} (0.200 \ \text{M}) \mid \text{Ag}^{+} (0.00200 \ \text{M}) \mid \text{Ag}_{(s)} \end{split}$$

$$Zn(s) \rightarrow Zn^{2+}(aq) + 2e - -E^{\circ} = 0.76 V$$

$$2 Ag^{+}(aq) + 2e - \rightarrow 2 Ag(s) E^{\circ} = 0.80 V$$

$$Zn(s) + 2 Ag^{+}(aq) \rightarrow Zn^{2+}(aq) + 2Ag(s) E^{\circ}_{cell} = 1.56 V$$

Note that n equals two. The reaction quotient is

$$Q = \frac{[Zn^{2+}]}{[Ag^{+}]^{2}} = \frac{0.200}{(0.00200)^{2}} = 5.00 \times 10^{4}$$

Chem 1046 Ch 19 Electrochemistry 12 of 17 11 July 2009 3:57 PM

The standard emf is 1.56 V, so the Nernst equation becomes

$$E_{cell} = E_{cell}^{\circ} - \frac{0.0592}{n} \log Q = 1.56 - \frac{0.0592}{2} \log (5.00 \times 10^4) = 1.56 - 0.13909 = 1.4209 = 1.42 V$$

The pH Meter: pH is determined using the Nernst equation.

A Zinc, Zn+ electrode is connected to a Hydrogen electrode using the test solution.

 $Zn_{(s)} | Zn^{2+} (1.00 \text{ M}) \| H^{+} (\text{test solution}) | H_{2} (1 \text{ atm}) | Pt$ $Zn_{(s)} + H^{+} (\text{test solution}) \rightarrow Zn^{2+} + H_{2} (1.00 \text{ atm})$ $Q = \frac{[Zn^{2+}]P_{H2}}{[H^{+}]^{2}} = \frac{1.00}{[H^{+}]^{2}}$

$$E_{cell} = E_{cell} - \frac{0.0592}{N} * \text{Log } q = 1.10 - \frac{0.0592}{2} \log \left(\frac{1}{|H^+|^2}\right)$$
And since pH = - log [H⁺]

 $pH = 0.76 - E_{cell} / 0.0592$ The pH is measured with a volt meter!

As the Hydrogen electrode is difficult to use in a lab, a Glass Electrode [silver wire coated with silver chloride immersed in dilute HCl with a thin glass membrane to separate it from the test solution] and a Calomel Electrode [Mercury – mercury (I) chloride electrode] are used!

Exercise 19.14 What is the Nickel (II) ion concentration in: $Zn_{(s)} | Zn^{2+} (1.00 \text{ M}) || Ni^{2+}_{(aq)} | Ni_{(s)} || Ni^{2+}_{(aq)} | Ni_{(s)} || Ni^{2+}_{(aq)} | Ni^{2+}_{(aq)} || Ni^{2+}_{(aq)} ||$

 $\begin{array}{rcl} Zn(s) & \rightarrow & Zn^{2+}(aq) + 2 e - & -E^{\circ} = 0.76 V \\ Ni^{2+}(aq) + 2 e - & \rightarrow & Ni(s) & E^{\circ} = -0.23 V \\ Zn(s) + Ni^{2+}(aq) & \rightarrow & Zn^{2+}(aq) + Ni(s) & E^{\circ}_{cell} = 0.53 V \end{array}$ Note that n equals two. The standard emf is 0.53 V, and the emf is 0.34 V, so the Nernst equation becomes

$$\begin{split} E_{cell} &= E^{\circ}_{cell} - \frac{0.0592}{n} \log Q & 0.34 \text{ V} = 0.53 \text{ V} - \frac{0.0592}{2} \log Q \\ \text{Rearrange and solve for } \log Q & \log Q = \frac{2}{0.0592} \text{ x } (0.53 - 0.34) = 6.418 \\ \text{Take the antilog of both sides} & Q = \frac{[Zn^{2+}]}{[Ni^{2+}]} = \text{antilog } (6.418) = \underline{2}.623 \text{ x } 10^6 \\ \text{Substitute in } [Zn^{2+}] = 1.00 \text{ M} \text{ and solve for } [Ni^{2+}]. & \frac{1.00 \text{ M}}{[Ni^{2+}]} = 2.624 \text{ x } 10^6 \\ [Ni^{2+}] = \underline{3.81 \text{ x } 10^{-7}} = 4 \text{ x } 10^{-7} \text{ M} \end{split}$$

Chem 1046 Ch 19 Electrochemistry 13 of 17

19.8 Commercial Voltaic Cells

Zinc-Carbon or dry cell 1.5 v

Zinc can as the anode, graphite rod in the center, past of magnesium dioxide and ammonium

Zn
$$\rightarrow$$
 Zn⁺² + 2 e-
2 NH₄⁺ + 2 MnO₂ + 2 e-
 \rightarrow Mn₂O₃ + H₂O + 2 NH₃

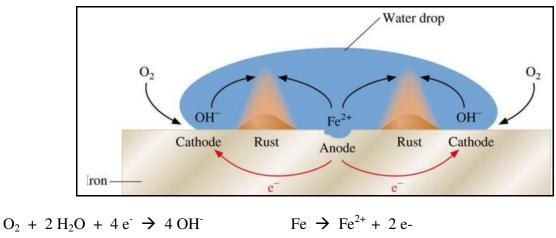
Same but use KOH in place of ammonium chloride Alkaline dry cell

> Zn + 2 OH- \rightarrow Zn(OH)2 + 2 e-2 MnO2 + H2O + 2 e- \rightarrow Mn2O3 + 2 OH⁻

Lithium-Iodine Battery

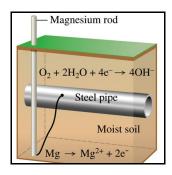
Fuel Cell

Lead alloy grids, and lead dioxide Lead storage cell


$Pb + HSO_4^-$	\rightarrow PbSO ₄ + H ⁺ + 2 e ⁻
$PbO_2 + 3H^+ + HSO_4^- + 2e^-$	\rightarrow PbSO ₄ + 2 H ₂ O

Nickel-cadmium cell anode of cadium, cathode nickel oxide hydrate in KOH

_		→ $Cd(OH)_2 + 2e^-$ → $Ni(OH)_2 + OH^-$
0	perates in a continuous mode	e, as reactants are there, it runs


 $\begin{array}{ccc} H_2 & \rightarrow & 2 H^+ + 2 e^- \\ O_2 &+ 4 H^+ + 4 e^- & \rightarrow & 2 H_2O \end{array}$

Rusting from a drop of water - the electrochemical process of rusting iron

 $\operatorname{Fe}^{+2} + 2 \operatorname{OH}^{-} \rightarrow \operatorname{Fe}(\operatorname{OH})_2$ $4 \operatorname{Fe(OH)}_2 + \operatorname{O}_2 \rightarrow 2 \operatorname{Fe}_2 \operatorname{O}_3 + \operatorname{H}_2 \operatorname{O}_3$ **Cathodic Protection –** Magnesium is a more "Active Metal" [more electropositive] and will react in place of Iron:

Magnesium Rod Mg \rightarrow Mg²⁺ + 2 e⁻ Instead of Fe \rightarrow Fe⁺² + 2 e⁻

19.9 Electrolysis of Molten Salts

Molten Sodium Chloride 801 °C.

 $Na^+ + e^- \rightarrow Na$ $Cl^- \rightarrow \frac{1}{2}Cl2 + e^-$

19.10 Aqueous Electrolysis

Electrolysis of Sulfuric Acid

Electrolysis of Sodium Chloride Solutions

Electrolysis of dilute NaCl gives H^2 and O^2 More concentrated solutions gives H^2 and Cl^2 and OH^2

Chlor-Alkali Membrane Cell

Electroplating of Metals

Ex 19.13 Electrolysis of CuSO4 CATHODE REACTIONS $Cu^{+2} + 2e^{-} \rightarrow Cu$ Eo = 0.34 v $2H_2O + 2e^{-} \rightarrow H_2 + 2OH$ Eo = - 0.83 v As Copper is larger than water, the Cu+2 is reduced

ANODE REACTIONS $2 \operatorname{SO_4}^{-2} \rightarrow \operatorname{S_2O_8}^{2-} + 2 \operatorname{e}^{-}$ -Eo = - 2.01 v $2 \operatorname{H_2O} \rightarrow \operatorname{O_2} + 4 \operatorname{H}^{+} + 4 \operatorname{e}^{-}$ -Eo = - 1.23 v

Water is the more positive value

Exercise 19.16 Elecrolyze silver nitrate, give the 1/2 reactions

Ag+ + e- \rightarrow Ag $E^{\circ} = 0.80v$ 2 H₂O + 2 e- \rightarrow H₂ + 2 OH- $E^{\circ} = -0.83 v$

Silver E^o is more positive, so silver is plated out

 $Ag^+ + e^- \rightarrow Ag \qquad 2 H_2O \rightarrow O_2 + 4H^+ + 4e^-$

Stoichiometry of Electrolysis

One Faraday $(9.65 \times 10^4 \text{ C})$ = one mole of electrons

Ampere (A) is the base unit of current in the SI system. The Coulomb (C) is an ampere – second.

Example 19.14 You need to know how to do this

Moles * Number of electrons * $\frac{9.65 \times 10^4 \text{ C}}{1 \text{ mole e}}$ = Coul (C = coulomb)

Current = charge (C) / time = Amp

Example 19.15 You need to know how to do this

Exercise 19.18 How many grams of O_2 come from the electrolysis of water with 0.0565 A for 1.85 x 10^4 sec.? When the current flows for 1.85 x 10^4 s, the amount of charge is

 $0.0565 \text{ A} \times 1.85 \times 10^4 \text{ s} = 1.045 \times 10^3 \text{ C}$

Note that four moles of electrons are equivalent to one mol of O2. Hence,

$$1.045 \times 10^{3} \text{ C x} \frac{1 \text{ mol } \text{e}^{-}}{9.65 \times 10^{4} \text{ C}} \times \frac{1 \text{ mol } \text{O}_{2}}{4 \text{ mol } \text{e}^{-}} \times \frac{32.00 \text{ g} \text{ O}_{2}}{1 \text{ mol } \text{O}_{2}}$$
$$= 0.0866 \text{ g} \text{ O}_{2}$$

Chem 1046, Ch 20 Test Questions [does not include the list for Titration and Ch 18] Potential Test Questions:

The final updated Chapter 20 Electochemistry Lecture Notes are now posted.

As I may have forgotten to give some example test question numbers, Ch 19 potential math questions are summarized below:

- 1. Balancing Redox equations in acidic solutions
- 2. Balancing Redox equations in basic solutions
- 3. Example 19.3 Draw the voltaic cell
- 4. 19.3 Notation for voltaic cells
- 5. Example 19.4 Write the cell reaction for
- 6. Exercise 19.5 Give the cell reaction for
- 7. Example 19.5
- 8. Exercise 19.6
- 9. Example 19.8
- 10. Exercise 19.9
- 11. Exercise 19.13
- 12. 19.8 Commercial Voltaic Cells
- 13. Rusting from a drop of water

And any bold defs are fair game.